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Abstract We repori systematic calculations of the low-tempemure diffusion thermopower of 
AI-based dilute alloys with 3d and 4sp impurities, by solving self-consislenlly the linearized 
Boltvnann equation. The impurity scattering is described by the phase shifts obtained from 
self-consistent local-densiry-hctional impuriw-in-jellium calculations. Momver. the influence 
of ule full anisolropy of the Al Fermi surface on the scattering process is aken into account 
within the on-Fermi-sphere approximation. Our results explain successfully the experimentally 
measured variations in the thermoelectric power, except for Mn impurities. In this case, the 
presence of a narrow many-body resonance at the Fermi level in the lowlized-spin-Rucruaions 
regime seems to be responsible for the large negative value of thermopower observed. 

1. Iotroduction 

The thermoelectric power of dilute alloys at low temperatures consists of the phonon drag 
contribution which is proportional to T 3 ,  and the so-called diffusion term which varies 
linearly with temperature. The diffusion thermopower reflects the energy derivative of 
the scattering amplitude of the Fermi surface (FS) electrons by the impurity potential and 
constitutes a very sensitive probe for studying the energy dependence of the scattering 
process. 

The investigation of the low-temperature thermoelectric properties of AI-based dilute 
alloys has attracted considerable experimental interest [ 1-71, It was found that the diffusion 
thennopower coefficient strongly depends on the specific type of the impurity and it is 
generally independent of the impurity concentration. 

Model calculations of the low-temperature diffusion thermopower of 3d impurities in AI 
have been reported by Zlatic and Rivier [SI. These calculations rely on the Friedel-Anderson 
[9, IO] virtual-bound-state model and use the localized-spin-fluctuations approximation [ I  I] 
in order to account for the large negative thermopower values measured for the impurities 
of the middle of the 3d series. The parameters involved in these calculations were fitted to 
the experimental resistivity values. 

An attempt to calculate the thermoelectric power of AI-based dilute alloys starting from 
a self-consistent solution of the linearized B o l t ”  equation using an anisotropic transport 
relaxation time was made by Boning [61. In this approach, the AI host was described by 
the four-orthogonal-plane-wave (WPW) model [12] and the effective potential of the point 
defect by pseudopotential form factors. The scattering was treated using the first-order Born 
approximation. However, application of this method is restricted to sp impurities, where 
the weak scattering justifies the use of the Born approximation. 

As a generalization of the above procedure, an effective T-matrix can be employed to 
describe the scattering, and the transition amplitude between two states on the FS is then 
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obtained in terms of the phase shifts, utilizing the so-called ‘on-Fermi-sphere approximation’ 
[13]. Within this approximation the phase shifts can be determined independently, e.g. by 
a first-principles calculation [14-161. Thus, weak sp as well as strong d scadering can be 
treated on the same footing. This method is employed in the present article to calculate the 
diffusion thermopower of Al-based dilute alloys containing 3d and 4sp impurities, without 
using any adjustable parameter. We u t i l i  the 4 - O W  model for the FS of AI, whereas the 
phase shifts describing the impurity scattering are obtained from self-consistent impurity- 
in-jellium calculations within the framework of the density-functional theory [17]. The 
linearized E o l t z ”  equation is then solved self-consistently to evaluate the anisotropic 
transport relaxation time on constant-energy surfaces in the vicinity of the Fermi level. 
From this relaxation time the thermoelectric power is calculated. 

In section 2 we describe our theoretical method and section 3 deals with some technical 
aspects of the computation. In section 4 we present and discuss our results. 

2. Theory 

The determination of the residual resistivity and the thermopower of dilute alloys requires 
the solution of the linearized Boltzmann equation in the presence of a homogeneous electric 
field E and a temperamre gradient VT [18]: 

where gk is the deviation from the Fermi-Duac distribution function e, V k  = V k E k p z  is 
the group velocity of Bloch electrons, c is the chemical potential and Pke is the scattering 
probability rate between states lk) and [k‘).  In the low-field limit and at sufficiently low 
temperatures, the incoherent scattering of conduction electrons from isolated impurity atoms 
is the dominant mechanism. Assuming elastic scattering we have 

where N is the total number of atoms in the crystal, c is the atomic concentration of 
impurities and Tk# is the T-matrix describing the scattering by a single impurity atom. 

In the low-field limit the vector mean free path is defined by the linear nmaa 

and is in general not parallel to the group velocity. However, following Biining etal [19] 
we assume that 

h k  = UkSk (4) 

where zk is the anisotropic transport relaxation time. Therefore, within the above 
approximations, equation (1) can be readily solved, yielding the following integral equation 
for 4: 
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where k lies on the FS, Q is the volume of the crystal and Uk = IVkI. 
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On the other hand, substituting the form (3) for gk into the general expression 

for the electric current density, we obtain for a crystal of cubic symmetry 

In the absence of a temperature gradient, the response of the system is determined by the 
isothermal conductivity U ,  which is given by the term in the first square brackets of (7). 
The second term in (7) gives the contribution of the temperature gradient to the current 
density. At low temperatures we can restrict ourselves to the leading order of a temperature 
power series expansion 1181 and obtain 

with 

Obviously, U(&)  U .  If we establish a temperature gradient in a specimen which is an 
open circuit 0' = 01, the ratio of the observed EMF to the temperature gradient defines the 
thermopower: 

This equation is known as the Mott formula [20]. As has been recently shown [21], even 
for a fully interacting electron-phonon system, and including the inelastic nature of the 
electron scattering by the phonons, the electron diffusion thermopower is still given by the 
Mott formula plus a small correction term. 

3. M e a d  of computation 

According to equations (9) and (lo), knowledge of the energy dependence of the host and 
impurity properties is necessary to calculate the electron diffusion thennopower. In order 
to evaluate the energy derivative in (IO), the surface integration involved in (9) has to be 
carried out over the Fs and also over surfaces of constant energy near EF. In this respect, 
we calculate the anisotropic relaxation time as a function of k on five surfaces of constant 
energy, namely 0.998Ep. 0.999&, EF, 1.001E~ and 1.002Ep, by self-consistently solving 



4668 Ph Mavropoulos et aI 

the integral equation (5) on these surfaces, using an iterative procedure. Starting with 
Ziman's [18] approximation as an initial guess for rk, namely 

we obtain an adequate convergence in rk in about five iterations in all cases examined. 
We construct the constant-energy surfaces around EF by employing the 4.0PW model, 

using the Fermi energy and the pseudopotential matrix elements which were fitted by Cole 
et 4l [ 151 to the de Haas-van AIphen experimental data of Coleridge and Holtham [22]. 
Following B6ning [6] we neglect any energy dependence of the pseudopotentials. The 
constant-energy surfaces obtained exhibit the same features as the FS of AI. In the second 
Brillouin zone they have a free-electron-lie portion with a slightly negative curvature, which 
covers most of the FS, and hole-like cylinders with a high positive cuwature, just below 
the Brillouin zone boundaries. Moreover, in the Wid zone there are toroid-like portions 
with a high negative curvature. The energy-surface integrations involved in (5) and (9) 
are performed by generating a system of triangles using about IO00 points on the second 
zone and about 650 points on the thud zone, and then applying a first-order integration rule 
within each triangle. Special care was taken in the highly c w e d  regions of the surfaces, 
where a denser mesh was used. The group velocity at a point k is calculated analytically, 
taking advantage of the explicit form of the 4-OPW Blocb wavefunctions [23]. 

In order to calculate the transition matrix Tkkr we use the 'on-Fermi-sphere 
approximation', according to which the crystal lattice pseudopotential is ignored during 
the scattering o f  the electrons by the impurity atom 1131. Therefore the problem is 
reduced to the evaluation of the phase shifts &(E) which describe the scattering of the 
angular momentum components of a single plane wave from the impurity potential. These 
phase shifts are obtained by calculating the electronic structure of an isolated impurity 
in a jellium having the electron density of AI. Within this model, a substitutional 
impurity is described by excavating a spherical hole with the volume of the AI Wigner- 
Seitz cell (V = 9 ~ r ~ ( f i ~ / 2 m E ~ ) ~ / ~ )  in the jellium positive background and inserting the 
nuclear charge of the impurity in the centre of this cavity. The electronic structure is 
calculated self-consistently witbin the framework of density-functional theory, using a Green 
function technique. Exchange and correlation effects are included through the local-density 
approximation (LDA) with the paramehization of Vosko et 41 1241. The range of the 
perturbing impurity potential S = 10 au and the angular momentum cut-off e, = 3 
are sufficient to obtain adequate convergence in all the cases examined. The calculated 
phase shifts satisfy the Friedel's [251 screening rule 

(12) 

where A 2  is the valence difference between the impurity and host atoms, within a few per 
cent. Details of our method of calculation can be found elsewhere [26]. 

4. Results and discussion 

If we assume a free-electron band structure and, consequently, a spherical FS of AI host, 
a ( E )  is given by [271 
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Figure 1. 'I%e low-temper;nure difiwion themnopower coefficient of 36 and 4sp substituti0d 
impurities ia an AI host: W, theoretical results; A >  expaimental data [1-3,61 (the experimental 
results for Mn were found to vary with the impurity concentration between -59 and -50 nV K-* 
[1,21 and are not pmnted in the figure); - C, results obtained by the jeUium model. 

where Z is the valence of the host ( Z  = 3 for AI). Then, the electron diffusion thermopower 
can be calculated by substituting (13) into (10) and computing numerically the energy 
derivative involved. The results obtained for the thermoelectric power by this isotropic 
treatment of the impurity scattering are plotted in figure 1. We can see that, with the 
exception of Mn and Fe impurities, the theoretical results reproduce more or less the 
experimentally observed trends. 

In the case of 3d impurities, the systematic variation in the low-temperature diffusion 
thennopower can be simply explained as follows. The resonant scattering of the d electrons 
from the impurity potential gives rise to the occurrence of a d  virtual bound state. As a result, 
the excess density of states introduced by the impurity is dominated by an approximately 
Lorentzian-shaped peak, of half-width r, centred at Ed. This implies that the d resonant 
phase shift varies with energy as 

For the 3d impurities it is reasonable to assume that the impurity is essentially screened by 
the d electrons. Thus, we may neglect the contribution of all the other phase shifts, except 
for the d phase shifts in the vicinity of the Fermi energy. This finally leads to the following 
simple expression for the thermoelectric power: 

Equation (15) predicts for S/T a sinusoidal variation within the 3d series, rigidly shifted to 
the negative values owing to the presence of the second term in the square brackets. This 
behaviour is, indeed, qualitatively observed in figure 1. 

As can be seen from figure 1, when the full anisotropy of the AI FS is taken into 
account in the calculation, much better agreement with the experiment is obtained. The 
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agreement is considerably improved, especially for the sp impurities. However, in the case 
of a Mn impurity, and to a lesser degree in the case of Fe, the theory cannot account for 
the large negative values of the experimentally measured diffusion thermopower coefficient. 
Considering the good general agreement between our results and the experiment, we believe 
that this discrepancy is ascribable to many-body correlation effects which are not taken into 
account in an LDA approach. 

The low- and room-temperature experimental data probing the properties of the 3d 
impurities in AI suggest that the impurities are non-magnetic [28-301; this is, in fact, 
what we have assumed in our calculations. However, when experiments show no sign of 
masnetism, the question is: does an impurity moment actually not exist, or is it screened 
by correlations with the conduction electrons (or very rapidly fluctuating) and thus cannot 
manifest itself? In order to answer this question, we performed spin-polarized calculations 
for all the impurities in AI. We find that in the case of Cr, Mn and Fe the calculations 
converge to magnetic solutions. This result is consistent with that obtained by the Koninga- 
Kohn-Rostoker (KKR) Green function method [31]. The KKR calculations yield also spin- 
polarized solutions for Cr, MO and Fe impurities in AI. For Mn, KKR and jellium calculations 
give very similar local momen& ( 2 . 5 3 ~ ~  and 2.41@~, respectively). However, owing 
to band-structure effects, which are not included in our impurity-in-jellium approach, the 
impurity moment, as evaluated by the KKR method, is somewhat smaller for Cr (Z.OOps) 
and larger for Fe ( 1 . 7 8 ~ ~ )  than our results ( 2 . 3 4 ~ ~  and 1.20p~, respectively). On the 
other hand, density-functional calculations for Fe in Al. by the embedded-cluster method, 
showed that the impurity is non-magnetic if lattice relaxation effects are taken into account 
[32]. In order to study the energy stability of the magnetic impurity states, we calculated 
the magnetic exchange energy of the impurities. This can be done efficiently by carrying 
out constrained density-functional calculations. Applying this method, details of which can 
be found elsewhere [33], we obtain a magnetic energy of 0.46 eV for Cr, 0.60 eV for Mn 
and 0.06 eV for Fe impurities. It seems therefore that, although the magnetic state of Fe 
is quite sensitive to the various approximations involved in a theoretical calculation, a Mn 
impurity is clearly magnetic in Al. 

It should be mentioned that LDA calculations provide a static picture of the ground-state 
properties of a system, within the framework of a oneelectron theory. A spin-polarized 
impurity state has, in this context, a well defined spin with infinite lifetime. On the other 
hand, AI-Mn is considered as a typical example of a spin-fluctuating system [29,30]. 
The central concept of the theory of localized spin fluctuations is the existence of a local 
moment which fluctuates with a lifetime s,r and only when the temperature is higher than 
a characteristic temperature h/kBr,r does the conduction electron, as a probe, not have 
the time to see that the impurity moment is ephemeral. This characteristic temperature is 
estimated to be of the order of 900 K for AI-Mn [29], which places this system in the spin- 
fluctuating regime at low temperatures and room temperature. In this regime, the density of 
states of a magnetic impurity is characterized, in addition to the singleparticle doublepeak 
structure, by the presence of a many-body resonance peak, of Abrikosov-Suhl type, at the 
Fermi level [29,30]. This narrow resonance is presumably responsible for the large negative 
value of the diffusion thermopower observed [SI. 
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